Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 451
Filtrar
1.
N Engl J Med ; 390(9): 783-794, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38381664

RESUMO

BACKGROUND: Effective treatments for patients with primary biliary cholangitis are limited. Seladelpar, a peroxisome proliferator-activated receptor delta agonist, has potential benefits. METHODS: In this phase 3, 12-month, double-blind, placebo-controlled trial, we randomly assigned (in a 2:1 ratio) patients who had had an inadequate response to or who had a history of unacceptable side effects with ursodeoxycholic acid to receive oral seladelpar at a dose of 10 mg daily or placebo. The primary end point was a biochemical response, which was defined as an alkaline phosphatase level less than 1.67 times the upper limit of the normal range, with a decrease of 15% or more from baseline, and a normal total bilirubin level at month 12. Key secondary end points were normalization of the alkaline phosphatase level at month 12 and a change in the score on the pruritus numerical rating scale (range, 0 [no itch] to 10 [worst itch imaginable]) from baseline to month 6 among patients with a baseline score of at least 4 (indicating moderate-to-severe pruritus). RESULTS: Of the 193 patients who underwent randomization and treatment, 93.8% received ursodeoxycholic acid as standard-of-care background therapy. A greater percentage of the patients in the seladelpar group than in the placebo group had a biochemical response (61.7% vs. 20.0%; difference, 41.7 percentage points; 95% confidence interval [CI], 27.7 to 53.4, P<0.001). Normalization of the alkaline phosphatase level also occurred in a greater percentage of patients who received seladelpar than of those who received placebo (25.0% vs. 0%; difference, 25.0 percentage points; 95% CI, 18.3 to 33.2, P<0.001). Seladelpar resulted in a greater reduction in the score on the pruritus numerical rating scale than placebo (least-squares mean change from baseline, -3.2 vs. -1.7; least-squares mean difference, -1.5; 95% CI, -2.5 to -0.5, P = 0.005). Adverse events were reported in 86.7% of the patients in the seladelpar group and in 84.6% in the placebo group, and serious adverse events in 7.0% and 6.2%, respectively. CONCLUSIONS: In this trial involving patients with primary biliary cholangitis, the percentage of patients who had a biochemical response and alkaline phosphatase normalization was significantly greater with seladelpar than with placebo. Seladelpar also significantly reduced pruritus among patients who had moderate-to-severe pruritus at baseline. The incidence and severity of adverse events were similar in the two groups. (Funded by CymaBay Therapeutics; RESPONSE ClinicalTrials.gov number, NCT04620733; EudraCT number, 2020-004348-27.).


Assuntos
Acetatos , Fármacos Gastrointestinais , Cirrose Hepática Biliar , Humanos , Acetatos/administração & dosagem , Acetatos/efeitos adversos , Acetatos/uso terapêutico , Fosfatase Alcalina/sangue , Método Duplo-Cego , Cirrose Hepática Biliar/sangue , Cirrose Hepática Biliar/complicações , Cirrose Hepática Biliar/tratamento farmacológico , Prurido/etiologia , Prurido/tratamento farmacológico , Resultado do Tratamento , Ácido Ursodesoxicólico/efeitos adversos , Ácido Ursodesoxicólico/uso terapêutico , PPAR delta/agonistas , Administração Oral , Bilirrubina/sangue , Fármacos Gastrointestinais/administração & dosagem , Fármacos Gastrointestinais/efeitos adversos , Fármacos Gastrointestinais/uso terapêutico , Colagogos e Coleréticos/administração & dosagem , Colagogos e Coleréticos/efeitos adversos , Colagogos e Coleréticos/uso terapêutico
2.
Sci Total Environ ; 912: 168949, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38042186

RESUMO

Di-2-ethylhexyl phthalic acid (DEHP) is one of the most widely used plasticizers in the industry, which can improve the flexibility and durability of plastics. It is prone to migrate from various daily plastic products through wear and leaching into the surrounding environment and decompose into the more toxic metabolite mono-2-ethylhexyl phthalic acid (MEHP) after entering the human body. However, the impacts and mechanisms of MEHP on neuroblastoma are unclear. We exposed MYCN-amplified neuroblastoma SK-N-BE(2)C cells to an environmentally related concentration of MEHP and found that MEHP increased the proliferation and migration ability of tumor cells. The peroxisome proliferator-activated receptor (PPAR) ß/δ pathway was identified as a pivotal signaling pathway in neuroblastoma, mediating the effects of MEHP through transcriptional sequencing analysis. Because MEHP can bind to the PPARß/δ protein and initiate the expression of the downstream gene angiopoietin-like 4 (ANGPTL4), the PPARß/δ-specific agonist GW501516 and antagonist GSK3787, the recombinant human ANGPTL4 protein, and the knockdown of gene expression confirmed the regulation of the PPARß/δ-ANGPTL4 axis on the malignant phenotype of neuroblastoma. Based on the critical role of PPARß/δ and ANGPTL4 in the metabolic process, a non-targeted metabolomics analysis revealed that MEHP altered multiple metabolic pathways, particularly lipid metabolites involving fatty acyls, glycerophospholipids, and sterol lipids, which may also be potential factors promoting tumor progression. We have demonstrated for the first time that MEHP can target binding to PPARß/δ and affect the progression of neuroblastoma by activating the PPARß/δ-ANGPTL4 axis. This mechanism confirms the health risks of plasticizers as tumor promoters and provides new data support for targeted prevention and treatment of neuroblastoma.


Assuntos
Dietilexilftalato/análogos & derivados , Neuroblastoma , PPAR delta , PPAR beta , Ácidos Ftálicos , Humanos , PPAR beta/agonistas , PPAR beta/genética , PPAR beta/metabolismo , Proteína Proto-Oncogênica N-Myc , Plastificantes/toxicidade , Angiopoietinas/genética , Angiopoietinas/metabolismo , Ácidos Ftálicos/toxicidade , Ácidos Ftálicos/metabolismo , PPAR delta/agonistas , PPAR delta/genética , PPAR delta/metabolismo , Proteína 4 Semelhante a Angiopoietina
3.
N Engl J Med ; 390(9): 795-805, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-37962077

RESUMO

BACKGROUND: Primary biliary cholangitis is a rare, chronic cholestatic liver disease characterized by the destruction of interlobular bile ducts, leading to cholestasis and liver fibrosis. Whether elafibranor, an oral, dual peroxisome proliferator-activated receptor (PPAR) α and δ agonist, may have benefit as a treatment for primary biliary cholangitis is unknown. METHODS: In this multinational, phase 3, double-blind, placebo-controlled trial, we randomly assigned (in a 2:1 ratio) patients with primary biliary cholangitis who had had an inadequate response to or unacceptable side effects with ursodeoxycholic acid to receive once-daily elafibranor, at a dose of 80 mg, or placebo. The primary end point was a biochemical response (defined as an alkaline phosphatase level of <1.67 times the upper limit of the normal range, with a reduction of ≥15% from baseline, and normal total bilirubin levels) at week 52. Key secondary end points were normalization of the alkaline phosphatase level at week 52 and a change in pruritus intensity from baseline through week 52 and through week 24, as measured on the Worst Itch Numeric Rating Scale (WI-NRS; scores range from 0 [no itch] to 10 [worst itch imaginable]). RESULTS: A total of 161 patients underwent randomization. A biochemical response (the primary end point) was observed in 51% of the patients (55 of 108) who received elafibranor and in 4% (2 of 53) who received placebo, for a difference of 47 percentage points (95% confidence interval [CI], 32 to 57; P<0.001). The alkaline phosphatase level normalized in 15% of the patients in the elafibranor group and in none of the patients in the placebo group at week 52 (difference, 15 percentage points; 95% CI, 6 to 23; P = 0.002). Among patients who had moderate-to-severe pruritus (44 patients in the elafibranor group and 22 in the placebo group), the least-squares mean change from baseline through week 52 on the WI-NRS did not differ significantly between the groups (-1.93 vs. -1.15; difference, -0.78; 95% CI, -1.99 to 0.42; P = 0.20). Adverse events that occurred more frequently with elafibranor than with placebo included abdominal pain, diarrhea, nausea, and vomiting. CONCLUSIONS: Treatment with elafibranor resulted in significantly greater improvements in relevant biochemical indicators of cholestasis than placebo. (Funded by GENFIT and Ipsen; ELATIVE ClinicalTrials.gov number, NCT04526665.).


Assuntos
Chalconas , Fármacos Gastrointestinais , Cirrose Hepática Biliar , Receptores Ativados por Proliferador de Peroxissomo , Propionatos , Humanos , Administração Oral , Fosfatase Alcalina/sangue , Bilirrubina/sangue , Chalconas/administração & dosagem , Chalconas/efeitos adversos , Chalconas/uso terapêutico , Colestase/sangue , Colestase/tratamento farmacológico , Colestase/etiologia , Método Duplo-Cego , Fármacos Gastrointestinais/administração & dosagem , Fármacos Gastrointestinais/efeitos adversos , Fármacos Gastrointestinais/uso terapêutico , Cirrose Hepática Biliar/sangue , Cirrose Hepática Biliar/complicações , Cirrose Hepática Biliar/tratamento farmacológico , Receptores Ativados por Proliferador de Peroxissomo/agonistas , PPAR alfa/agonistas , PPAR delta/agonistas , Propionatos/administração & dosagem , Propionatos/efeitos adversos , Propionatos/uso terapêutico , Prurido/tratamento farmacológico , Prurido/etiologia , Resultado do Tratamento , Ácido Ursodesoxicólico/efeitos adversos , Ácido Ursodesoxicólico/uso terapêutico , Colagogos e Coleréticos/administração & dosagem , Colagogos e Coleréticos/efeitos adversos , Colagogos e Coleréticos/uso terapêutico
4.
Trends Pharmacol Sci ; 45(1): 9-23, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38065777

RESUMO

Peroxisome proliferator-activated receptors [PPARs; PPARα, PPARß/δ (also known as PPARδ), and PPARγ] widely recognized for their important role in glucose/lipid homeostasis, have recently received significant attention due to their additional anti-inflammatory and neuroprotective effects. Several newly developed PPAR agonists have shown high selectivity for specific PPAR isoforms in vitro and in vivo, offering the potential to achieve desired therapeutic outcomes while reducing the risk of adverse effects. In this review, we discuss the latest preclinical and clinical studies of the activation of PPARs by synthetic, natural, and isoform-specific (full, partial, and dual) agonists for the treatment of neuroinflammatory diseases, including HIV-associated neurocognitive disorders (HAND), Alzheimer's disease (AD), Parkinson's disease (PD), multiple sclerosis (MS), and cerebral ischemia.


Assuntos
PPAR delta , PPAR beta , Humanos , Receptores Ativados por Proliferador de Peroxissomo/agonistas , Receptores Ativados por Proliferador de Peroxissomo/fisiologia , Doenças Neuroinflamatórias , PPAR delta/agonistas , PPAR delta/fisiologia , PPAR beta/fisiologia , PPAR alfa/agonistas , PPAR alfa/fisiologia , PPAR gama/agonistas , PPAR gama/fisiologia , Hipoglicemiantes
5.
J Med Chem ; 66(16): 11428-11446, 2023 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-37552807

RESUMO

Peroxisome proliferator-activated receptor δ (PPARδ) is considered to be a pharmaceutical target to treat metabolic diseases including atherosclerosis, but there is no PPARδ agonist available for clinical use. We have previously reported the discovery of piperidinyl/piperazinyl benzothiazole derivatives as a new series of PPARδ agonists using docking-based virtual screening methods. In the present study, we found that introduction of a pyrrolidine group into the 4-position of their central piperidine rings enhances hPPARδ activity and subtype selectivity. This led to the discovery of 21 having strong PPARδ agonist activity (EC50 = 3.6 nM) with excellent ADME properties. Furthermore, 21 significantly suppressed atherosclerosis progression by 50-60% with reduction of the serum level of MCP-1 in LDLr-KO mice.


Assuntos
Aterosclerose , PPAR delta , Camundongos , Animais , PPAR delta/agonistas , Aterosclerose/tratamento farmacológico , Anti-Inflamatórios , Tiazóis , Piperidinas/farmacologia
6.
J Med Chem ; 66(11): 7331-7354, 2023 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-37243609

RESUMO

Peroxisome proliferator-activator receptors α/δ (PPARα/δ) are considered as potential drug targets for cholestatic liver diseases (CLD) via ameliorating hepatic cholestasis, inflammation, and fibrosis. In this work, we developed a series of hydantoin derivatives as potent PPARα/δ dual agonists. Representative compound V1 exhibited PPARα/δ dual agonistic activity at the subnanomolar level (PPARα EC50 = 0.7 nM; PPARδ EC50 = 0.4 nM) and showed excellent selectivity over other related nuclear receptors. The crystal structure revealed the binding mode of V1 and PPARδ at 2.1 Å resolution. Importantly, V1 demonstrated excellent pharmacokinetic (PK) properties and a good safety profile. Notably, V1 showed potent anti-CLD and antifibrotic effects in preclinical models at very low doses (0.03 and 0.1 mg/kg). Collectively, this work provides a promising drug candidate for treating CLD and other hepatic fibrosis diseases.


Assuntos
Colestase , PPAR delta , Humanos , PPAR alfa/agonistas , PPAR delta/agonistas , Colestase/tratamento farmacológico , Inflamação
7.
Bioorg Med Chem ; 82: 117215, 2023 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-36840990

RESUMO

Peroxisome proliferator-activated receptor δ (PPARδ) is considered to be a target for treating metabolic syndrome, whereas there is no PPARδ agonist in clinical use. Previously, we have reported the discovery of 2-(1-piperidinyl)-1,3-benzothiazole derivatives as a new series of PPARδ agonists using docking-based virtual screening techniques. In this study, we performed the further optimization study of the lead compound 1 focusing on improvement of hydrophobic interactions in the binding site to enhance agonist efficacy for PPARδ and subtype selectivity, thereby discovering a novel PPARδ agonist 5g which exhibited high in vitro agonist activity (hPPARδ, EC50 = 4.1 nM) and sufficiently high selectivity ratio over PPARα and PPARγ. Moreover, 5g revealed a significant upregulation of high-density lipoprotein cholesterol level in vivo.


Assuntos
Benzotiazóis , PPAR delta , Relação Estrutura-Atividade , Benzotiazóis/farmacologia , Sítios de Ligação , Ativação Transcricional , PPAR delta/agonistas
8.
J Chin Med Assoc ; 86(1): 39-46, 2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36599141

RESUMO

BACKGROUND: Hyperglycemia-induced advanced glycation end products (AGEs) and receptor for AGEs (RAGEs) play major roles in diabetic nephropathy progression. In previous study, both glucagon-like peptide-1 (GLP-1) and peroxisome proliferator-activated receptors delta (PPARδ) agonists were shown to have anti-inflammatory effect on AGE-treated rat mesangial cells (RMCs). The interaction among PPARδ agonists, GLP-1, and AGE-RAGE axis is, however, still unclear. METHODS: In this study, the individual and synergic effect of PPARδ agonist (L-165 041) and siRNA of GLP-1 receptor (GLP-1R) on the expression of GLP-1, GLP-1R, RAGE, and cell viability in AGE-treated RMCs were investigated. RESULTS: L-165 041 enhanced GLP-1R mRNA and protein expression only in the presence of AGE. The expression of RAGE mRNA and protein was enhanced by AGE, attenuated by L-165 041, and siRNA of GLP-1R reversed L-165 041-induced inhibition. Cell viability was also inhibited by AGE. L-165 041 attenuated AGE-induced inhibition and siRNA GLP-1R diminished L-165 041 effect. CONCLUSION: PPARδ agonists increase GLP-1R expression on RMC in the presence of AGE. PPARδ agonists also attenuate AGE-induced upregulated RAGE expression and downregulated cell viability. The effect of PPARδ agonists needs the cooperation of GLP-1R activation.


Assuntos
Células Mesangiais , PPAR delta , Ratos , Animais , Células Mesangiais/metabolismo , Receptor do Peptídeo Semelhante ao Glucagon 1/agonistas , Produtos Finais de Glicação Avançada/farmacologia , Produtos Finais de Glicação Avançada/metabolismo , PPAR delta/agonistas , PPAR delta/metabolismo , Peptídeo 1 Semelhante ao Glucagon/farmacologia , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Glucose/farmacologia , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , RNA Interferente Pequeno/farmacologia , RNA Mensageiro
9.
Methods Mol Biol ; 2576: 145-153, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36152183

RESUMO

Peroxisome proliferator-activated receptors (PPARs) have been exploited as drug targets for combating multiple diseases. Several activators with different selectivity for the PPAR α, γ, and δ subtypes have been introduced into the market or have reached advanced clinical trials. Binding assays are of utmost importance for the discovery and profiling of such PPAR ligands. Binding assays are often based on radioligands, in particular, tritiated molecules are applied. We developed synthetic procedures for tritiating various PPAR agonists and applied these radioligands for setting up a scintillation proximity assay (SPA) for PPAR α, γ, and δ. These SPAs allow to assess the binding affinities of PPAR α, γ, and δ ligands, along with their respective subtype selectivity profiles. Therefore, SPA is an important tool for hit discovery and lead optimization campaigns aimed at identifying next-generation PPAR ligands.


Assuntos
PPAR alfa , PPAR delta , Hipoglicemiantes , Ligantes , PPAR alfa/agonistas , PPAR alfa/metabolismo , PPAR delta/agonistas , PPAR delta/metabolismo , PPAR gama/metabolismo , Receptores Ativados por Proliferador de Peroxissomo
10.
Front Endocrinol (Lausanne) ; 13: 941822, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36046786

RESUMO

Myocardial ischemia/reperfusion (I/R) injury leads to significant impairment of cardiac function and remains the leading cause of morbidity and mortality worldwide. Activation of peroxisome proliferator-activated receptor ß/δ (PPARß/δ) confers cardioprotection via pleiotropic effects including antioxidant and anti-inflammatory actions; however, the underlying mechanisms are not yet fully elucidated. The aim of this study was to investigate the effect of PPARß/δ activation on myocardial mitochondrial respiratory function and link this effect with cardioprotection after ischemia/reperfusion (I/R). For this purpose, rats were treated with the PPARß/δ agonist GW0742 and/or antagonist GSK0660 in vivo. Mitochondrial respiration and ROS production rates were determined using high-resolution fluororespirometry. Activation of PPARß/δ did not alter mitochondrial respiratory function in the healthy heart, however, inhibition of PPARß/δ reduced fatty acid oxidation (FAO) and complex II-linked mitochondrial respiration and shifted the substrate dependence away from succinate-related energy production and towards NADH. Activation of PPARß/δ reduced mitochondrial stress during in vitro anoxia/reoxygenation. Furthermore, it preserved FAO-dependent mitochondrial respiration and lowered ROS production at oxidative phosphorylation (OXPHOS)-dependent state during ex vivo I/R. PPARß/δ activation was also followed by increased mRNA expression of components of FAO -linked respiration and of transcription factors governing mitochondrial homeostasis (carnitine palmitoyl transferase 1b and 2-CPT-1b and CPT-2, electron transfer flavoprotein dehydrogenase -ETFDH, peroxisome proliferator-activated receptor gamma co-activator 1 alpha- PGC-1α and nuclear respiratory factor 1-NRF-1). In conclusion, activation of PPARß/δ stimulated both FAO-linked respiration and PGC-1α/NRF -1 signaling and preserved mitochondrial respiratory function during I/R. These effects are associated with reduced infarct size.


Assuntos
PPAR delta , PPAR beta , Animais , Ácidos Graxos/metabolismo , Isquemia , PPAR delta/agonistas , PPAR delta/metabolismo , PPAR beta/agonistas , PPAR beta/genética , PPAR beta/metabolismo , Ratos , Espécies Reativas de Oxigênio/metabolismo , Reperfusão , Respiração
11.
Int J Mol Sci ; 23(9)2022 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-35563117

RESUMO

Among the agonists against three peroxisome proliferator-activated receptor (PPAR) subtypes, those against PPARα (fibrates) and PPARγ (glitazones) are currently used to treat dyslipidemia and type 2 diabetes, respectively, whereas PPARδ agonists are expected to be the next-generation metabolic disease drug. In addition, some dual/pan PPAR agonists are currently being investigated via clinical trials as one of the first curative drugs against nonalcoholic fatty liver disease (NAFLD). Because PPARα/δ/γ share considerable amino acid identity and three-dimensional structures, especially in ligand-binding domains (LBDs), clinically approved fibrates, such as bezafibrate, fenofibric acid, and pemafibrate, could also act on PPARδ/γ when used as anti-NAFLD drugs. Therefore, this study examined their PPARα/δ/γ selectivity using three independent assays-a dual luciferase-based GAL4 transactivation assay for COS-7 cells, time-resolved fluorescence resonance energy transfer-based coactivator recruitment assay, and circular dichroism spectroscopy-based thermostability assay. Although the efficacy and efficiency highly varied between agonists, assay types, and PPAR subtypes, the three fibrates, except fenofibric acid that did not affect PPARδ-mediated transactivation and coactivator recruitment, activated all PPAR subtypes in those assays. Furthermore, we aimed to obtain cocrystal structures of PPARδ/γ-LBD and the three fibrates via X-ray diffraction and versatile crystallization methods, which we recently used to obtain 34 structures of PPARα-LBD cocrystallized with 17 ligands, including the fibrates. We herein reveal five novel high-resolution structures of PPARδ/γ-bezafibrate, PPARγ-fenofibric acid, and PPARδ/γ-pemafibrate, thereby providing the molecular basis for their application beyond dyslipidemia treatment.


Assuntos
Diabetes Mellitus Tipo 2 , Dislipidemias , Hepatopatia Gordurosa não Alcoólica , PPAR delta , Benzoxazóis , Bezafibrato/farmacologia , Bezafibrato/uso terapêutico , Butiratos , Diabetes Mellitus Tipo 2/metabolismo , Dislipidemias/tratamento farmacológico , Fenofibrato/análogos & derivados , Humanos , Ligantes , PPAR alfa/metabolismo , PPAR delta/agonistas , PPAR gama/metabolismo
12.
J Biol Chem ; 298(7): 102056, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35605662

RESUMO

Peroxisome proliferator-activated receptor delta (PPARδ) agonists have been shown to exert beneficial effects in liver disease and reduce total bile acid levels. The mechanism(s) whereby PPARδ agonism reduces bile acid levels are, however, unknown, and therefore the aim of the present study was to investigate the molecular pathways responsible for reducing bile acid synthesis in hepatocytes, following treatment with the selective PPARδ agonist, seladelpar. We show that administration of seladelpar to WT mice repressed the liver expression of cholesterol 7 alpha-hydroxylase (Cyp7a1), the rate-limiting enzyme for bile acid synthesis, and decreased plasma 7α-hydroxy-4-cholesten-3-one (C4), a freely diffusible metabolite downstream of Cyp7a1. In primary mouse hepatocytes, seladelpar significantly reduced the expression of Cyp7a1 independent of the nuclear bile acid receptor, Farnesoid X receptor. In addition, seladelpar upregulated fibroblast growth factor 21 (Fgf21) in mouse liver, serum, and in cultured hepatocytes. We demonstrate that recombinant Fgf21 protein activated the c-Jun N-terminal kinase (JNK) signaling pathway and repressed Cyp7a1 gene expression in primary hepatocytes. The suppressive effect of seladelpar on Cyp7a1 expression was blocked by a JNK inhibitor as well as in the absence of Fgf21, indicating that Fgf21 plays an indispensable role in PPARδ-mediated downregulation of Cyp7a1. Finally, reduction of CYP7A1 expression by seladelpar was confirmed in primary human hepatocytes. In conclusion, we show that seladelpar reduces bile acid synthesis via an FGF21-dependent mechanism that signals at least partially through JNK to repress CYP7A1.


Assuntos
Acetatos , Ácidos e Sais Biliares , Colesterol 7-alfa-Hidroxilase , Fatores de Crescimento de Fibroblastos , PPAR delta , Acetatos/farmacologia , Animais , Ácidos e Sais Biliares/biossíntese , Colesterol 7-alfa-Hidroxilase/genética , Colesterol 7-alfa-Hidroxilase/metabolismo , Fatores de Crescimento de Fibroblastos/metabolismo , Hepatócitos/metabolismo , Humanos , Camundongos , PPAR delta/agonistas , Transdução de Sinais
13.
Stem Cell Res Ther ; 13(1): 167, 2022 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-35461240

RESUMO

BACKGROUND: Mesenchymal Stromal Cells (MSC) have been widely used for their therapeutic properties in many clinical applications including myocardial infarction. Despite promising preclinical results and evidences of safety and efficacy in phases I/ II, inconsistencies in phase III trials have been reported. In a previous study, we have shown using MSC derived from the bone marrow of PPARß/δ (Peroxisome proliferator-activated receptors ß/δ) knockout mice that the acute cardioprotective properties of MSC during the first hour of reperfusion are PPARß/δ-dependent but not related to the anti-inflammatory effect of MSC. However, the role of the modulation of PPARß/δ expression on MSC cardioprotective and anti-apoptotic properties has never been investigated. OBJECTIVES: The aim of this study was to investigate the role of PPARß/δ modulation (inhibition or activation) in MSC therapeutic properties in vitro and ex vivo in an experimental model of myocardial infarction. METHODS AND RESULTS: Naïve MSC and MSC pharmacologically activated or inhibited for PPARß/δ were challenged with H2O2. Through specific DNA fragmentation quantification and qRT-PCR experiments, we evidenced in vitro an increased resistance to oxidative stress in MSC pre-treated by the PPARß/δ agonist GW0742 versus naïve MSC. In addition, PPARß/δ-priming allowed to reveal the anti-apoptotic effect of MSC on cardiomyocytes and endothelial cells in vitro. When injected during reperfusion, in an ex vivo heart model of myocardial infarction, 3.75 × 105 PPARß/δ-primed MSC/heart provided the same cardioprotective efficiency than 7.5 × 105 naïve MSC, identified as the optimal dose in our experimental model. This enhanced short-term cardioprotective effect was associated with an increase in both anti-apoptotic effects and the number of MSC detected in the left ventricular wall at 1 h of reperfusion. By contrast, PPARß/δ inhibition in MSC before their administration in post-ischemic hearts during reperfusion decreased their cardioprotective effects. CONCLUSION: Altogether these results revealed that PPARß/δ-primed MSC exhibit an increased resistance to oxidative stress and enhanced anti-apoptotic properties on cardiac cells in vitro. PPARß/δ-priming appears as an innovative strategy to enhance the cardioprotective effects of MSC and to decrease the therapeutic injected doses. These results could be of major interest to improve MSC efficacy for the cardioprotection of injured myocardium in AMI patients.


Assuntos
Células-Tronco Mesenquimais , Infarto do Miocárdio , Traumatismo por Reperfusão Miocárdica , PPAR delta , PPAR beta , Animais , Células Endoteliais/metabolismo , Peróxido de Hidrogênio , Células-Tronco Mesenquimais/metabolismo , Camundongos , Infarto do Miocárdio/metabolismo , Infarto do Miocárdio/terapia , Traumatismo por Reperfusão Miocárdica/metabolismo , Traumatismo por Reperfusão Miocárdica/terapia , PPAR delta/agonistas , PPAR delta/genética , PPAR delta/metabolismo , PPAR beta/agonistas , PPAR beta/genética , PPAR beta/metabolismo , Tiazóis
14.
Acta Crystallogr F Struct Biol Commun ; 78(Pt 2): 81-87, 2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-35102897

RESUMO

Peroxisome proliferator-activated receptor δ (PPARδ) is a member of the nuclear receptor family and regulates glucose and lipid homeostasis in a ligand-dependent manner. Numerous phenylpropanoic acid derivatives targeting three PPAR subtypes (PPARα, PPARγ and PPARδ) have been developed towards the treatment of serious diseases such as lipid-metabolism disorders. In spite of the increasing attraction of PPARδ as a pharmaceutical target, only a limited number of protein-ligand complex structures are available. Here, four crystal structures of the ligand-binding domain of PPARδ in complexes with phenylpropanoic acid derivatives and a pyridine carboxylic acid derivative are described, including an updated, higher resolution version of a previous studied structure and three novel structures. These structures showed that the ligands were bound in the ligand-binding pocket of the receptor in a similar manner but with minor variations. The results could provide variable structural information for the further design and development of ligands targeting PPARδ.


Assuntos
PPAR delta/química , PPAR delta/metabolismo , Sítios de Ligação , Ácidos Carboxílicos/química , Cristalografia por Raios X , Humanos , Ligantes , Modelos Moleculares , PPAR delta/agonistas , Conformação Proteica , Piridinas/química , Piridinas/metabolismo
15.
J Med Chem ; 65(3): 1961-1978, 2022 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-35089724

RESUMO

Metabolic diseases are increasing at staggering rates globally. The peroxisome proliferator-activated receptors (PPARα/γ/δ) are fatty acid sensors that help mitigate imbalances between energy uptake and utilization. Herein, we report compounds derived from phenolic lipids present in cashew nut shell liquid (CNSL), an abundant waste byproduct, in an effort to create effective, accessible, and sustainable drugs. Derivatives of anacardic acid and cardanol were tested for PPAR activity in HEK293 cell co-transfection assays, primary hepatocytes, and 3T3-L1 adipocytes. In vivo studies using PPAR-expressing zebrafish embryos identified CNSL derivatives with varying tissue-specific activities. LDT409 (23) is an analogue of cardanol with partial agonist activity for PPARα and PPARγ. Pharmacokinetic profiling showed that 23 is orally bioavailable with a half-life of 4 h in mice. CNSL derivatives represent a sustainable source of selective PPAR modulators with balanced intermediate affinities (EC50 ∼ 100 nM to 10 µM) that provide distinct and favorable gene activation profiles for the treatment of diabetes and obesity.


Assuntos
Ácidos Anacárdicos/farmacologia , Anacardium/química , Nozes/química , PPAR alfa/agonistas , PPAR delta/agonistas , PPAR gama/agonistas , Células 3T3-L1 , Ácidos Anacárdicos/síntese química , Ácidos Anacárdicos/metabolismo , Ácidos Anacárdicos/farmacocinética , Animais , Desenho de Fármacos , Expressão Gênica/efeitos dos fármacos , Células HEK293 , Humanos , Metabolismo dos Lipídeos/efeitos dos fármacos , Metabolismo dos Lipídeos/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Simulação de Acoplamento Molecular , PPAR alfa/química , PPAR delta/química , PPAR gama/química , Domínios Proteicos , Peixe-Zebra
16.
Bioorg Med Chem Lett ; 59: 128567, 2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-35063634

RESUMO

Novel PPARδ agonists, 2-(1-piperidinyl)-1,3-benzothiazole derivatives were discovered by our proprietary docking-based virtual screening technique. Compound 1 as the initial hit was effectively modified to acquire PPARδ agonist activity, resulting in the discovery of compound 12 with high agonistic potency for PPARδ and selectivity over PPARα and PPARγ. Compound 12 also had good ADME profiles and showed in vivo efficacy as a lead.


Assuntos
Benzotiazóis/farmacologia , Descoberta de Drogas , PPAR delta/agonistas , Benzotiazóis/síntese química , Benzotiazóis/química , Relação Dose-Resposta a Droga , Avaliação Pré-Clínica de Medicamentos , Humanos , Estrutura Molecular , PPAR alfa/agonistas , PPAR gama/agonistas , Relação Estrutura-Atividade
17.
J Med Chem ; 65(3): 2571-2592, 2022 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-35060744

RESUMO

Peroxisome proliferator-activator receptors α/δ (PPARα/δ) are regarded as potential therapeutic targets for nonalcoholic steatohepatitis (NASH). However, PPARα/δ dual agonist GFT-505 exhibited poor anti-NASH effects in a phase III clinical trial, probably due to its weak PPARα/δ agonistic activity and poor metabolic stability. Other reported PPARα/δ dual agonists either exhibited limited potency or had unbalanced PPARα/δ agonistic activity. Herein, we report a series of novel triazolone derivatives as PPARα/δ dual agonists. Among them, compound H11 exhibited potent and well-balanced PPARα/δ agonistic activity (PPARα EC50 = 7.0 nM; PPARδ EC50 = 8.4 nM) and a high selectivity over PPARγ (PPARγ EC50 = 1316.1 nM) in PPAR transactivation assays. The crystal structure of PPARδ in complex with H11 revealed a unique PPARδ-agonist interaction. H11, which had excellent PK properties and a good safety profile, showed potent in vivo anti-NASH effects in preclinical models. Together, H11 holds a great promise for treating NASH or other inflammatory and fibrotic diseases.


Assuntos
Anti-Inflamatórios/uso terapêutico , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , PPAR alfa/agonistas , PPAR delta/agonistas , Triazóis/uso terapêutico , Animais , Anti-Inflamatórios/síntese química , Anti-Inflamatórios/metabolismo , Anti-Inflamatórios/farmacocinética , Tetracloreto de Carbono , Desenho de Fármacos , Inflamação/tratamento farmacológico , Inflamação/patologia , Fígado/efeitos dos fármacos , Fígado/patologia , Cirrose Hepática/induzido quimicamente , Cirrose Hepática/tratamento farmacológico , Cirrose Hepática/patologia , Masculino , Camundongos Endogâmicos C57BL , Microssomos Hepáticos/efeitos dos fármacos , Estrutura Molecular , Hepatopatia Gordurosa não Alcoólica/patologia , PPAR alfa/metabolismo , PPAR delta/metabolismo , Ratos Sprague-Dawley , Relação Estrutura-Atividade , Triazóis/síntese química , Triazóis/metabolismo , Triazóis/farmacocinética
18.
Bioorg Med Chem ; 56: 116615, 2022 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-35051813

RESUMO

The free fatty acid receptor 1 (FFA1/GPR40) and peroxisome proliferator-activated receptor δ (PPARδ) have been widely considered as promising targets for type 2 diabetes mellitus (T2DM) due to their respective roles in promoting insulin secretion and improving insulin sensitivity. Hence, the dual FFA1/PPARδ agonists may exert synergistic effects by simultaneously activating FFA1 and PPARδ. The present study performed systematic exploration around previously reported FFA1 agonist 2-(2-fluoro-4-((2'-methyl-4'-(3-(methylsulfonyl)propoxy)-[1,1'-biphenyl]-3-yl)methoxy)phenoxy)acetic acid (lead compound), leading to the identification of a novel dual FFA1/PPARδ agonist 2-(2-fluoro-4-((3-(6-methoxynaphthalen-2-yl)benzyl)oxy)phenoxy)acetic acid (the optimal compound), which displayed high selectivity over PPARα and PPARγ. In addition, the docking study provided us with detailed binding modes of the optimal compound in FFA1 and PPARδ. Furthermore, the optimal compound exhibited greater glucose-lowering effects than lead compound, which might attribute to its synergistic effects by simultaneously modulating insulin secretion and resistance. Moreover, the optimal compound has an acceptable safety profile in the acute toxicity study at a high dose of 500 mg/kg Therefore, our results provided a novel dual FFA1/PPARδ agonist with excellent glucose-lowering effects in vivo.


Assuntos
Acetatos/farmacologia , Desenho de Fármacos , Hipoglicemiantes/farmacologia , PPAR delta/agonistas , Receptores Acoplados a Proteínas G/agonistas , Acetatos/síntese química , Acetatos/química , Animais , Relação Dose-Resposta a Droga , Humanos , Hipoglicemiantes/síntese química , Hipoglicemiantes/química , Masculino , Camundongos , Camundongos Endogâmicos ICR , Simulação de Acoplamento Molecular , Estrutura Molecular , Relação Estrutura-Atividade
19.
Int J Mol Sci ; 22(21)2021 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-34768927

RESUMO

Synthetic ligands of peroxisome-proliferator-activated receptor beta/delta (PPARß/δ) are being used as performance-enhancing drugs by athletes. Since we previously showed that PPARß/δ activation affects T cell biology, we wanted to investigate whether a specific blood T cell signature could be employed as a method to detect the use of PPARß/δ agonists. We analyzed in primary human T cells the in vitro effect of PPARß/δ activation on fatty acid oxidation (FAO) and on their differentiation into regulatory T cells (Tregs). Furthermore, we conducted studies in mice assigned to groups according to an 8-week exercise training program and/or a 6-week treatment with 3 mg/kg/day of GW0742, a PPARß/δ agonist, in order to (1) determine the immune impact of the treatment on secondary lymphoid organs and to (2) validate a blood signature. Our results show that PPARß/δ activation increases FAO potential in human and mouse T cells and mouse secondary lymphoid organs. This was accompanied by increased Treg polarization of human primary T cells. Moreover, Treg prevalence in mouse lymph nodes was increased when PPARß/δ activation was combined with exercise training. Lastly, PPARß/δ activation increased FAO potential in mouse blood T cells. Unfortunately, this signature was masked by training in mice. In conclusion, beyond the fact that it is unlikely that this signature could be used as a doping-control strategy, our results suggest that the use of PPARß/δ agonists could have potential detrimental immune effects that may not be detectable in blood samples.


Assuntos
Exercício Físico/fisiologia , Ácidos Graxos/metabolismo , PPAR delta/agonistas , PPAR beta/agonistas , Detecção do Abuso de Substâncias/métodos , Linfócitos T Reguladores/imunologia , Animais , Células Cultivadas , Humanos , Inflamação/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Oxirredução/efeitos dos fármacos , PPAR delta/farmacologia , PPAR beta/farmacologia , Substâncias para Melhoria do Desempenho/farmacologia , Linfócitos T Reguladores/citologia , Linfócitos T Reguladores/efeitos dos fármacos , Tiazóis/farmacologia
20.
Eur J Med Chem ; 225: 113807, 2021 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-34455359

RESUMO

The peroxisome proliferator-activated receptors (PPARs) exert vital function in the regulation of energy metabolism, which were considered as promising targets of metabolic syndrome. Until now, PPARδ/γ dual agonist is rarely reported, and thereby the pharmacologic action of PPARδ/γ dual agonist is still unclear. In this study, we identified a dual PPARδ/γ partial agonist 6 (ZLY06) based on the cyclization strategy of PPARα/δ dual agonist GFT505. ZLY06 revealed excellent pharmacokinetic profiles suitable for oral medication. Moreover, ZLY06 markedly improved glucolipid metabolism without weight gain, and alleviated fatty liver by promoting the ß-oxidation of fatty acid and inhibiting hepatic lipogenesis. In contrast, weight gain and hepatic steatosis were observed in Rosiglitazone, a widely used PPARγ full agonist. All of these results indicated that ZLY06 exhibits potential benefits on metabolic syndrome, while no adverse effects related to PPARγ full agonist.


Assuntos
Diabetes Mellitus Experimental/tratamento farmacológico , Descoberta de Drogas , Síndrome Metabólica/tratamento farmacológico , Compostos Orgânicos/farmacologia , PPAR delta/agonistas , PPAR gama/agonistas , Animais , Diabetes Mellitus Experimental/induzido quimicamente , Diabetes Mellitus Experimental/metabolismo , Dieta Hiperlipídica , Relação Dose-Resposta a Droga , Masculino , Síndrome Metabólica/induzido quimicamente , Síndrome Metabólica/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Estrutura Molecular , Compostos Orgânicos/síntese química , Compostos Orgânicos/química , PPAR delta/metabolismo , PPAR gama/metabolismo , Ratos , Ratos Sprague-Dawley , Estreptozocina , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...